Localized Discrete Empirical Interpolation Method

نویسندگان

  • Benjamin Peherstorfer
  • Daniel Butnaru
  • Karen Willcox
  • Hans-Joachim Bungartz
چکیده

This paper presents a new approach to construct more efficient reduced-order models for nonlinear partial differential equations with proper orthogonal decomposition and the discrete empirical interpolation method (DEIM). Whereas DEIM projects the nonlinear term onto one global subspace, our localized discrete empirical interpolation method (LDEIM) computes several local subspaces, each tailored to a particular region of characteristic system behavior. Then, depending on the current state of the system, LDEIM selects an appropriate local subspace for the approximation of the nonlinear term. In this way, the dimensions of the local DEIM subspaces, and thus the computational costs, remain low even though the system might exhibit a wide range of behaviors as it passes through different regimes. LDEIM uses machine learning methods in the offline computational phase to discover these regions via clustering. Local DEIM approximations are then computed for each cluster. In the online computational phase, machine-learning-based classification procedures select one of these local subspaces adaptively as the computation proceeds. The classification can be achieved using either the system parameters or a low-dimensional representation of the current state of the system obtained via feature extraction. The LDEIM approach is demonstrated for a reacting flow example of an H2-Air flame. In this example, where the system state has a strong nonlinear dependence on the parameters, the LDEIM provides speedups of two orders of magnitude over standard DEIM.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient approximation of sparse Jacobians for time-implicit reduced order models

This paper introduces a sparse matrix discrete interpolation method to effectively compute matrix approximations in the reduced order modeling framework. The sparse algorithm developed herein relies on the discrete empirical interpolation method and uses only samples of the nonzero entries of the matrix series. The proposed approach can approximate very large matrices, unlike the current matrix...

متن کامل

Presentation of K Nearest Neighbor Gaussian Interpolation and comparing it with Fuzzy Interpolation in Speech Recognition

Hidden Markov Model is a popular statisical method that is used in continious and discrete speech recognition. The probability density function of observation vectors in each state is estimated with discrete density or continious density modeling. The performance (in correct word recognition rate) of continious density is higher than discrete density HMM, but its computation complexity is very ...

متن کامل

Presentation of K Nearest Neighbor Gaussian Interpolation and comparing it with Fuzzy Interpolation in Speech Recognition

Hidden Markov Model is a popular statisical method that is used in continious and discrete speech recognition. The probability density function of observation vectors in each state is estimated with discrete density or continious density modeling. The performance (in correct word recognition rate) of continious density is higher than discrete density HMM, but its computation complexity is very ...

متن کامل

Nonlinear Model Reduction via Discrete Empirical Interpolation

Nonlinear Model Reduction via Discrete Empirical Interpolation by Saifon Chaturantabut This thesis proposes a model reduction technique for nonlinear dynamical systems based upon combining Proper Orthogonal Decomposition (POD) and a new method, called the Discrete Empirical Interpolation Method (DEIM). The popular method of Galerkin projection with POD basis reduces dimension in the sense that ...

متن کامل

Localized Model Reduction in Porous Media Flow

This paper introduces a new localized approach to construct an efficient reduced order model for fluid flow simulation and optimization in porous media flow. For nonlinear systems, one of the most common methodology used is the proper orthogonal decomposition (POD) combined with discrete empirical interpolation method (DEIM) due to its computational efficiency and good approximation. Whereas re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2014